首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
大气科学   5篇
地球物理   26篇
地质学   37篇
海洋学   4篇
天文学   9篇
自然地理   2篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1993年   1篇
  1990年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
To examine electron transport, energization, and precipitation in Mercury's magnetosphere, a hybrid simulation study has been carried out that follows electron trajectories within the global magnetospheric electric and magnetic field configuration of Mercury. We report analysis for two solar-wind parameter conditions corresponding to the first two MESSENGER Mercury flybys on January 14, 2008, and October 6, 2008, which occurred for similar solar wind speed and density but contrasting interplanetary magnetic field (IMF) directions. During the first flyby the IMF had a northward component, while during the second flyby the IMF was southward. Electron trajectories are traced in the fields of global hybrid simulations for the two flybys. Some solar wind electrons follow complex trajectories at or near where dayside reconnection occurs and enter the magnetosphere at these locations. The entry locations depend on the IMF orientation (north or south). As the electrons move through the entry regions they can be energized as they execute non-adiabatic (demagnetized) motion. Some electrons become magnetically trapped and drift around the planet with energies on the order of 1–10 keV. The highest energy of electrons anywhere in the magnetosphere is about 25 keV, consistent with the absence of high-energy (>35 keV) electrons observed during either MESSENGER flyby. Once within the magnetosphere, a fraction of the electrons precipitates at the planetary surface with fluxes on the order of 109 cm−2 s−1 and with energies of hundreds of eV. This finding has important implications for the viability of electron-stimulated desorption (ESD) as a mechanism for contributing to the formation of the exosphere and heavy ion cloud around Mercury. From laboratory estimates of ESD ion yields, a calculated ion production rate due to ESD at Mercury is found to be on par with ion sputtering yields.  相似文献   
32.
The static linear optical properties (refractive indices, birefringence and axial angle) of andradite–grossular (Ca3Fe2Si3O12–Ca3Al2Si3O12) solid solutions have been computed at the ab initio quantum-mechanical level through the Coupled Perturbed Kohn–Sham scheme, using an all-electron Gaussian-type basis set. Geometry relaxation after substitution of 1–8 Al for Fe atoms in the primitive cell of andradite yields 23 non-equivalent configurations ranging from cubic to triclinic symmetry. Refractive indices vary quite regularly between the andradite (1.860) and grossular (1.671) end-members; the birefringence δ and the axial angle 2V at intermediate compositions can be as large as 0.02° and 89°, respectively. Comparison with experiments suffers from inhomogeneities and impurities of natural samples; however, semi-quantitative agreement is observed.  相似文献   
33.
In the critical zone, surficial bedrock interactions result in the formation of a mantle of chemically‐ and physically‐altered material defined here as regolith. In the watershed of the Río Icacos, an upland river draining the Luquillo Mountains in tropical Puerto Rico, we explored the influence of lithology (quartz diorite versus hornfels‐facies volcaniclastic rock) on weathering. Regolith profiles were studied by drilling boreholes and imaging the subsurface using ground penetrating radar (GPR). Overall, the regolith structure is not laterally continuous but rather is punctuated by zones of deep fractures that host in situ weathering, corestones, and colluvial material. GPR images of these vertical zones show reflectors at 15–20 m depth. Thus, the architecture of the critical zone in the upper Luquillo Mountains is highly dependent on lithology and its influence on fracture development. At the highest elevations where hornfels overlies quartz diorite, positive feedbacks occur when the water table drops so that oxidative weathering of biotite in the more felsic rock creates microfractures and allows deeper infiltration of meteoric waters. Such exposure results in some of the fastest weathering rocks in the world and may contribute to formation of the knickpoint in the Río Icacos watershed. This work represents the first study combining GPR and drilling to look at the structure of the deep critical zone and demonstrates: (1) the importance of combining direct methods (such as drilling) with indirect methods (such as GPR) to understand the architecture of the critical zone in tropical systems; (2) the interplay of the surficial stress regime, lithology and climate in dictating the architecture of weathering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
34.
Although the seismic actions generally consist of a combination of waves, which propagates with an angle of incidence not necessarily vertical, the common practice when analyzing the dynamic behavior of pile groups is based on the assumption of vertically incident wave fields. The aim of this paper is to analyze how the angle of incidence of SV waves affects the dynamic response of pile foundations and piled structures. A three-dimensional boundary element-finite element coupling formulation is used to compute impedances and kinematic interaction factors corresponding to several configurations of vertical pile groups embedded in an isotropic homogeneous linear viscoelastic half-space. These results, which are provided in ready-to-use dimensionless graphs, are used to determine the effective dynamic properties of an equivalent single-degree-of-freedom oscillator that reproduces, within the range where the peak response occurs, the response of slender and nonslender superstructures through a procedure based on a substructuring model. Results are expressed in terms of effective flexible-base period and damping as well as maximum shear force at the base of the structure. The relevance and main trends observed in the influence of the wavefront angle of incidence on the dynamic behavior of the superstructure are inferred from the presented results. It is found that effective damping is significantly affected by the variations of the wave angle of incidence. Furthermore, it comes out that the vertical incidence is not always the worst-case scenario.  相似文献   
35.
The periodic ab-initio Hartree-Fock Self Consistent Field program CRYSTAL has been used to study the electronic structure and equation of state of MgSiO3 perovskite. Three space groups were considered: Pm3m (cubic; ideal untilted SiO6 octahedra), P4/mbm (tetragonal; the octahedra are allowed to deform along and rotate about the crystallographic c cell edge) and Pbnm (orthorhombic; octahedra are allowed to deform along and rotate about the three cell edges). The calculated orthorhombic structure is the most stable, in agreement with experiment. The relative stability of the three structures and the effect of pressure on the SiO6 octahedra is interpreted in terms of bond population data and is mainly determined by the oxygen-oxygen repulsion.  相似文献   
36.
37.
The evaluation of the feasibility of ex situ carbonation in landfills utilizing raw natural substances (namely serpentinites as Mg-source and the CO2-rich fraction of biogas as C-source) was tested through a laboratory procedure comprising three steps. The first step is the acid attack of a serpentinite at 70 °C, by means of HCl 2 M, to get MgCl2-rich solutions. Attacks of different durations were performed to evaluate the time needed. The second step is the neutralization of the MgCl2-rich solution by addition of concentrated ammonia. The third (carbonation) step is mixing of the neutralized MgCl2-rich solution with a solution of ammonium carbonate. This was produced in a landfill by absorption of CO2 contained in biogas in a solution of ammonia. The neutralization of acid MgCl2-rich solutions caused the precipitation of ferrihydrite with secondary ammonium carnallite and salammoniac, whereas abundant precipitation of Amorphous Hydrated Impure Magnesium Carbonate (AHIMC), sometimes with minor nesquehonite, occurred in the third step. This solid carbonate acts as a stable CO2 sink up to 380 °C. The geochemical behavior of some minor elements was also investigated during the experimental processes revealing that Al, Cr and Ni were removed during neutralization (second step), in contrast to Ca which remained in the circumneutral MgCl2-rich solution and entered into the structure of AHIMC. During the carbonation step, precipitation of artinite, hydromagnesite, lansfordite, magnesite and nesquehonite was thermodynamically impossible as the aqueous phase was undersaturated with respect to these solid phases upon separation of AHIMC.  相似文献   
38.
Organochlorine pesticides (OCPs) use has been restricted or forbidden in Argentina since 1998 and technical endosulfan is the last currently used OCPs on the soybean-wheat production. As they persist in soil for several years after application, OCPs constitute a source of environmental pollution. This work aims to assess OCPs contamination of groundwater (Gw) and streamwater (Sw) in the Quequén Grande River watershed from south Argentinean Pampas in relation to the hydrogeological characteristics. OCPs were analyzed in Sw, Gw, surface bottom sediments, soils and borehole cutting sediments (Cs) by gas chromatograph-electron capture detector. Pesticide distribution in Cs was dependent on the characteristic of the non-saturated zone. Leached pesticides over 3 m in Cs showed the pattern: HCHs = endosulfan > chlordanes > DDTs, and from 3 to 6 m heptachlor was the main group as a consequence of the past use of this compound in the area, mainly on potato crops. Endosulfan reaches Gw during application season as well as during flooding events while a retard effect was observed for Sw. Levels of α- and β-isomers were in certain cases above national (7 ng L−1) and international (3 ng L−1) limits for aquatic biota protection. As the endosulfan sulfate metabolite was present in Gw and Sw and due to its high toxicity, it should be considered in the establishment of water quality criteria for human and environmental protection.  相似文献   
39.
The surface composition of Europa is of special interest due to the information it might provide regarding the presence of a subsurface ocean. One source of this information is the infrared reflectance spectrum. Certain surface regions of Europa exhibit distorted H2O vibrational overtone bands in the 1.5 and 2.0 μm region, as measured by the Galileo mission Near Infrared Mapping Spectrometer (NIMS). These bands are clearly the result of highly concentrated solvated contaminants. However, two interpretations of their identity have been presented. One emphasizes hydrated salt minerals and the other sulfuric acid, although each does not specifically rule out some of the other. It has been pointed out that accurate chemical identification of the surface composition must depend on integrating spectral data with geochemical models, and information on the tenuous atmosphere sputtered from the surface. It is also extremely important to apply detailed chemistry when interpreting the spectral data, including knowledge of mineral dissolution chemistry and the subsequent optical signatures of ion solvation in low-temperature ice. We present studies of flash frozen acid and salt mixtures as Europa surface analogs and demonstrate that solvated protons, metal cations and inorganic anions all influence the spectra and must all, collectively, be considered when assigning Europa spectral features. These laboratory data show best correlation with NIMS Europa spectra for multi-component mixtures of sodium and magnesium bearing sulfate salts mixed with sulfuric acid. The data provide a concentration upper bound of 50-mol% for MgSO4 and 40-mol% for Na2SO4. This newly reported higher sodium and proton content is consistent with low-temperature aqueous differentiation and hydrothermal processing of carbonaceous chondrite-forming materials during the formation and early evolution of Europa.  相似文献   
40.
Effects of masonry infills on the seismic vulnerability of steel frames is studied through multi-scale numerical modelling. First, a micro-modelling approach is utilized to define a homogenized masonry material, calibrated on experimental tests, which is used for modelling the nonlinear response of a one-story, single span, masonry-infilled portal under horizontal loads. Based on results of the micro-model, the constitutive behavior of a diagonal strut macro-element equivalent to the infill panel is calibrated. Then, the diagonal strut is used to model infill panels in the macro-scale analysis of a multi-span multi-story infilled moment-resisting (MR) steel frame. The seismic vulnerability of the MR frame is evaluated through a nonlinear static procedure. Numerical analyses highlight that infills may radically modify the seismic response and the failure mechanism of the frame, hence the importance of the infill correct modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号